本次美国代写主要为国际贸易相关的problem set
1.考虑一个拥有SH熟练工人和UH非熟练工人的国家。那里有两个
最终商品,索引为0和1,其各自的生产函数为
F0(S; U)= minfS; Ug,F1(S; U)= S +U。
本质上,工人必须由一个熟练工人和一个非熟练工人组成的团队一起工作
产生好的0,他们就可以自己产生好的1。写p!价格
的好! 2 f0; 1g并写出wS和wU来表示熟练工和非熟练工的工资。
一种。假设p0 = p1> 2.为此经济建立带有单位收益曲线的图表
并显示此图所隐含的可能的要素价格(wS; wU),假设
两种商品都生产。
b。在a的上下文中,确定0 <SH <UH时的产出和要素价格。做
对于SH> UH> 0,情况相同。
C。假设p0 = p1 <2。为此经济设置带有单位收入曲线的图表
并显示在给定任何因子end赋SH> 0和UH> 0的情况下会发生什么。
您知道这种情况下的要素价格吗?
d。显示这种经济的生产可能性并确认结论
关于您在a,b和c中达到的输出。
2.考虑一个LH> 0劳动单位和KH> 0资本单位的母国。
有两种消费商品,以索引! 2 f0; 1克好的 !可以生产
使用生产功能定义的技术
F!(K; L)= x!K + z!L,
其中K 0是资本,L 0是劳动力。写出0和p的价格的p0和p1
分别为商品1和v,其中w和w为资本和劳动力的要素价格。每个人
具有相同的相似偏好,并且具有永远不会触及轴的独立曲线。
一种。在水平轴上输出良好0且在水平轴上输出良好1的图中
纵轴,描述此经济的生产可能性边界。仔细贴标签
并显示图表如何随着参数从z1 = z0> x1 = x0的变化而变化
到z1 = z0 <x1 = x0(同时显示两个图表)。
b。在这两种情况中的每种情况下,可能的均衡相对价格p0 = p1是多少?
解释。
C。显示这种经济的勒纳图。形容多元化。
考虑到商品0和1的产量增加KH或LH的影响是什么?
给定价格p0和p1?
现在假设还有一个外国国家,其消费者具有相同的偏好-
在本国作为消费者。资本和劳动力的the赋
国外为KF 2(0; KH),LF = LH,技术与
本国。对于其余部分,仅考虑z1 = z0> x1 = x0的情况。
d。在一张图中显示两国的生产可能性边界。
1. Consider a country with SH skilled workers and UH unskilled workers. There are two
Önal goods, indexed by 0 and 1, and the respective production functions are
F0(S; U) = minfS; Ug, F1(S; U) = S + U.
Essentially, workers must work in a team of one skilled worker and one unskilled worker
to produce good 0, and they can produce good 1 by themselves. Write p! for the price
of good! 2 f0; 1g and write wS and wU for skilled and unskilled wages.
a. Suppose p0=p1> 2. Set up a diagram with the unit-revenue curves for this economy
and show the possible factor prices (wS;wU) implied by this diagram, assuming that
both goods are produced.
b. In the context of a, determine output and factor prices when 0 <SH <UH. Do the
same for the case SH> UH> 0.
c. Suppose p0=p1 <2. Set up a diagram with the unit-revenue curves for this economy
and show what will happen given any factor endowments SH> 0 and UH> 0. What do
you know about factor prices in this case?
d. Show the production possibility set for this economy and conÖrm the conclusions
about output you reached in a, b and c.
2. Consider a home country with LH > 0 units of labor and KH > 0 units of capital.
There are two consumption goods, indexed by ! 2 f0; 1g. Good ! can be produced
using a technology deÖned by the production function
F!(K; L) = x!K + z!L,
where K 0 is capital and L 0 is labor. Write p0 and p1 for the prices of good 0 and
good 1, respectively, and v and w for the factor prices of capital and labor. Everyone
has the same homothetic preferences with indi§erence curves that never hit the axes.
a. In a diagram with output of good 0 on the horizontal axis and output of good 1 on the
vertical axis, describe the production possibility frontier of this economy. Carefully label
everything and show how the diagram changes as parameters change from z1=z0 > x1=x0
to z1=z0 < x1=x0 (show both diagrams.)
b. What are the possible equilibrium relative prices p0=p1 in each of these two cases?
Explain.
c. Show the Lerner diagram for this economy. Describe the cone of diversiÖcation.
What is the e§ect of increases in KH or LH on the output of goods 0 and 1, taking the
prices p0 and p1 as given?
Now suppose there is also a foreign country with consumers who have the same prefer-
ences as consumers in the home country. The endowments of capital and labor in the
foreign country are KF 2 (0;KH) and LF = LH, and the technology is the same as in
the home country. For the remainder, consider only the case z1=z0 > x1=x0.
d. Show the production possibility frontiers of the two countries in one diagram.