本次北美数学代写主要是完成MATH数学证明题目
Mat246H1-Lec0101/9101
Problem Set 4
练习1。令z∈C等于| z |。 = 1且z̸=±1。 证明z− 1π2,Im(z)> 0
arg z + 1 =-π2,Im(z)<0。 练习2.证明以下主张
1.Foranyz∈C,z̸=1andn∈N,
1 + z + z2 +··zn = zn + 1 -1。
1 + w +··+ wn-1 = 0。 3.(奖金)如果θ∈(0,2π)和n∈N,则
1个
1 + cos(θ)+ cos(2θ)+··+ + cos(nθ)= 2 +
练习3。如果存在a,b∈Z,则自然数n称为“好”,因此a2 + b2 = n。
提示:使用复数。
练习4.令P(z)= anzn +··+ a0是具有实系数的多项式。 证明如果z是多项式的根,则z so也是。 推论出,任何具有实系数的多项式都可以写为具有实系数的多项式的乘积,分别为1或2级。
Exercise 1. Let z ∈ C, be such that |z| = 1 and z ̸= ±1. Show that z − 1 π2 , Im (z) > 0
arg z+1 = −π2, Im(z)<0. Exercise 2. Prove the following claims
1. Foranyz∈C,z̸=1andn∈N,
1+z+z2 +···zn = zn+1 −1.
1+w+···+wn−1 =0. 3. (Bonus)Ifθ∈(0,2π)andn∈N,then
1
1 + cos (θ) + cos (2θ) + · · · + cos (nθ) = 2 +
Exercise 3. A natural number n is called good if there exists a, b ∈ Z so that a2+b2 =n.Showthatifnandmaregood,thenn·misalsogood.
Hint: Use complex numbers.
Exercise 4. Let P (z) = anzn + · · · + a0 be a polynomial with real coecients. Show that if z is a root of the polynomial, then so is z ̄. Deduce that any poly- nomial with real coecients can be written as a product of polynomials with real coecients each one of degree 1 or 2.