这个作业是完成股票风险收益模型

MATH 5816
Continuous Time Financial Modelling
Term 3 2020
Assignment 2

Question 1 –
1.我希望您提供最多两页的Vicky Henderson学术论文摘要
和David Hobson(2004)实用程序无差异定价-概述。它出现在书中
《冷漠的定价》(R. Carmona编辑),普林斯顿大学出版社。预印本将出现在
面尝试着重于论文的一两个部分,并提供一些结果,
用自己的话来证明他们。
对于此具体示例,假定以下内容
•无风险利率r = 0
•使用指数效用函数u(X)= e
−γX且γ= 0.01
•没有初始财富价值
•资产价格遵循收益率为µ的几何布朗运动:
St = S0 exp
(µ-
1个
2
σ
2
)t +σWt

•市场具有独特的mar度量Q和相应的无套利
风险中性期望
考虑假股票的卖出价格,乔治,收益X =(550 − ST)
+在
当前价格S0 = 600,µ = 0和σ

T = 0.25。使用连续交易冷漠
在风险中性预期下卖出价格,找到EQ [X]和无差异卖出价格。
请记住,您处于Black-Scholes模型中。
2. Read the academic paper, Song-Ping Zhu (2005) A closed-form exact solution for the value
of American put and its optimal exercise boundary, Proc. SPIE 5848, Noise and Fluctuations in
Econophysics and Finance, (23 May 2005); doi: 10.1117/12.609078
Provide a paragraph review why or why not you think this is a closed form solution for the
American put option. Make sure you support your answer.